– Create a plot of the variabl
– Create a plot of the variable “fortw” (fortified winesales).
– Create a plot of the ACF function for the same variable.
– create a naive and exponential smoothing forecast for thevariable “fortw”. makw sure to take into account the attricutesthat yous aw fromthe above plots. make sure to produce plots withthe actual data and forecasts overlaid (one graph per forecastingtechnique)
– Using the Mean Absolute Percentage Error (MAPE) measure oferror, which of the forecasting techniques perform best?
– create a forecast for 1 period ahead (i.e. outside fo thesample).
– Compare the 1 period ahead forecasts for the 2 different basicforecasting techniques. Hint: the predict() functio will be helpfulfor the exponetial smoothing method.
Repeat the entirety of the above analysis but with the variablex.
Can someone aswer this Using R Script? What are the fuctions andsteps to writing this script?
winet | fortw | dryw | sweetw | red | rose | spark |
1 | 2585 | 1954 | 85 | 464 | 112 | 1686 |
2 | 3368 | 2302 | 89 | 675 | 118 | 1591 |
3 | 3210 | 3054 | 109 | 703 | 129 | 2304 |
4 | 3111 | 2414 | 95 | 887 | 99 | 1712 |
5 | 3756 | 2226 | 91 | 1139 | 116 | 1471 |
6 | 4216 | 2725 | 95 | 1077 | 168 | 1377 |
7 | 5225 | 2589 | 96 | 1318 | 118 | 1966 |
8 | 4426 | 3470 | 128 | 1260 | 129 | 2453 |
9 | 3932 | 2400 | 124 | 1120 | 205 | 1984 |
10 | 3816 | 3180 | 111 | 963 | 147 | 2596 |
11 | 3661 | 4009 | 178 | 996 | 150 | 4087 |
12 | 3795 | 3924 | 140 | 960 | 267 | 5179 |
13 | 2285 | 2072 | 150 | 530 | 126 | 1530 |
14 | 2934 | 2434 | 132 | 883 | 129 | 1523 |
15 | 2985 | 2956 | 155 | 894 | 124 | 1633 |
16 | 3646 | 2828 | 132 | 1045 | 97 | 1976 |
17 | 4198 | 2687 | 91 | 1199 | 102 | 1170 |
18 | 4935 | 2629 | 94 | 1287 | 127 | 1480 |
19 | 5618 | 3150 | 109 | 1565 | 222 | 1781 |
20 | 5454 | 4119 | 155 | 1577 | 214 | 2472 |
21 | 3624 | 3030 | 123 | 1076 | 118 | 1981 |
22 | 2898 | 3055 | 130 | 918 | 141 | 2273 |
23 | 3802 | 3821 | 150 | 1008 | 154 | 3857 |
24 | 2369 | 4001 | 163 | 1063 | 226 | 4551 |
25 | 2369 | 2529 | 101 | 544 | 89 | 1510 |
26 | 2511 | 2472 | 123 | 635 | 77 | 1329 |
27 | 3079 | 3134 | 127 | 804 | 82 | 1518 |
28 | 3728 | 2789 | 112 | 980 | 97 | 1790 |
29 | 4151 | 2758 | 108 | 1018 | 127 | 1537 |
30 | 4326 | 2993 | 116 | 1064 | 121 | 1449 |
31 | 5054 | 3282 | 153 | 1404 | 117 | 1954 |
32 | 5138 | 3437 | 163 | 1286 | 117 | 1897 |
33 | 3310 | 2804 | 128 | 1104 | 106 | 1706 |
34 | 3508 | 3076 | 142 | 999 | 112 | 2514 |
35 | 3790 | 3782 | 170 | 996 | 134 | 3593 |
36 | 3446 | 3889 | 214 | 1015 | 169 | 4524 |
37 | 2127 | 2271 | 134 | 615 | 75 | 1609 |
38 | 2523 | 2452 | 122 | 722 | 108 | 1638 |
39 | 3017 | 3084 | 142 | 832 | 115 | 2030 |
40 | 3265 | 2522 | 156 | 977 | 85 | 1375 |
41 | 3822 | 2769 | 145 | 1270 | 101 | 1320 |
42 | 4027 | 3438 | 169 | 1437 | 108 | 1245 |
43 | 4420 | 2839 | 134 | 1520 | 109 | 1600 |
44 | 5255 | 3746 | 165 | 1708 | 124 | 2298 |
45 | 4009 | 2632 | 156 | 1151 | 105 | 2191 |
46 | 3074 | 2851 | 111 | 934 | 95 | 2511 |
47 | 3465 | 3871 | 165 | 1159 | 135 | 3440 |
48 | 3718 | 3618 | 197 | 1209 | 164 | 4923 |
49 | 1954 | 2389 | 124 | 699 | 88 | 1609 |
50 | 2604 | 2344 | 124 | 830 | 85 | 1435 |
51 | 3626 | 2678 | 139 | 996 | 112 | 2061 |
52 | 2836 | 2492 | 137 | 1124 | 87 | 1789 |
53 | 4042 | 2858 | 127 | 1458 | 91 | 1567 |
54 | 3584 | 2246 | 134 | 1270 | 87 | 1404 |
55 | 4225 | 2800 | 136 | 1753 | 87 | 1597 |
56 | 4523 | 3869 | 171 | 2258 | 142 | 3159 |
57 | 2892 | 3007 | 112 | 1208 | 95 | 1759 |
58 | 2876 | 3023 | 110 | 1241 | 108 | 2504 |
59 | 3420 | 3907 | 147 | 1265 | 139 | 4273 |
60 | 3159 | 4209 | 196 | 1828 | 159 | 5274 |
61 | 2101 | 2353 | 112 | 809 | 61 | 1771 |
62 | 2181 | 2570 | 118 | 997 | 82 | 1682 |
63 | 2724 | 2903 | 125 | 1164 | 124 | 1846 |
64 | 2954 | 2910 | 122 | 1205 | 93 | 1589 |
65 | 4092 | 3782 | 120 | 1538 | 108 | 1896 |
66 | 3470 | 2759 | 118 | 1513 | 75 | 1379 |
67 | 3990 | 2931 | 281 | 1378 | 87 | 1645 |
68 | 4239 | 3641 | 344 | 2083 | 103 | 2512 |
69 | 2855 | 2794 | 366 | 1357 | 90 | 1771 |
70 | 2897 | 3070 | 362 | 1536 | 108 | 3727 |
71 | 3433 | 3576 | 580 | 1526 | 123 | 4388 |
72 | 3307 | 4106 | 523 | 1376 | 129 | 5434 |
73 | 1914 | 2452 | 348 | 779 | 57 | 1606 |
74 | 2214 | 2206 | 246 | 1005 | 65 | 1523 |
75 | 2320 | 2488 | 197 | 1193 | 67 | 1577 |
76 | 2714 | 2416 | 306 | 1522 | 71 | 1605 |
77 | 3633 | 2534 | 279 | 1539 | 76 | 1765 |
78 | 3295 | 2521 | 280 | 1546 | 67 | 1403 |
79 | 4377 | 3093 | 358 | 2116 | 110 | 2584 |
80 | 4442 | 3903 | 431 | 2326 | 118 | 3318 |
81 | 2774 | 2907 | 448 | 1596 | 99 | 1562 |
82 | 2840 | 3025 | 433 | 1356 | 85 | 2349 |
83 | 2828 | 3812 | 504 | 1553 | 107 | 3987 |
84 | 3758 | 4209 | 579 | 1613 | 141 | 5891 |
85 | 1610 | 2138 | 384 | 814 | 58 | 1389 |
86 | 1968 | 2419 | 335 | 1150 | 65 | 1442 |
87 | 2248 | 2622 | 320 | 1225 | 70 | 1548 |
88 | 3262 | 2912 | 496 | 1691 | 86 | 1935 |
89 | 3164 | 2708 | 448 | 1759 | 93 | 1518 |
90 | 2972 | 2798 | 377 | 1754 | 74 | 1250 |
91 | 4041 | 3254 | 523 | 2100 | 87 | 1847 |
92 | 3402 | 2895 | 468 | 2062 | 73 | 1930 |
93 | 2898 | 3263 | 428 | 2012 | 101 | 2638 |
94 | 2555 | 3736 | 520 | 1897 | 100 | 3114 |
95 | 3056 | 4077 | 493 | 1964 | 96 | 4405 |
96 | 3717 | 4097 | 662 | 2186 | 157 | 7242 |
97 | 1755 | 2175 | 304 | 966 | 63 | 1853 |
98 | 2193 | 3138 | 308 | 1549 | 115 | 1779 |
99 | 2198 | 2823 | 313 | 1538 | 70 | 2108 |
100 | 2777 | 2498 | 328 | 1612 | 66 | 2336 |
101 | 3076 | 2822 | 354 | 2078 | 67 | 1728 |
102 | 3389 | 2738 | 338 | 2137 | 83 | 1661 |
103 | 4231 | 4137 | 483 | 2907 | 79 | 2230 |
104 | 3118 | 3515 | 355 | 2249 | 77 | 1645 |
105 | 2524 | 3785 | 439 | 1883 | 102 | 2421 |
106 | 2280 | 3632 | 290 | 1739 | 116 | 3740 |
107 | 2862 | 4504 | 352 | 1828 | 100 | 4988 |
108 | 3502 | 4451 | 454 | 1868 | 135 | 6757 |
109 | 1558 | 2550 | 306 | 1138 | 71 | 1757 |
110 | 1940 | 2867 | 303 | 1430 | 60 | 1394 |
111 | 2226 | 3458 | 344 | 1809 | 89 | 1982 |
112 | 2676 | 2961 | 254 | 1763 | 74 | 1650 |
113 | 3145 | 3163 | 309 | 2200 | 73 | 1654 |
114 | 3224 | 2880 | 310 | 2067 | 91 | 1406 |
115 | 4117 | 3331 | 379 | 2503 | 86 | 1971 |
116 | 3446 | 3062 | 294 | 2141 | 74 | 1968 |
117 | 2482 | 3534 | 356 | 2103 | 87 | 2608 |
118 | 2349 | 3622 | 318 | 1972 | 87 | 3845 |
119 | 2986 | 4464 | 405 | 2181 | 109 | 4514 |
120 | 3163 | 5411 | 545 | 2344 | 137 | 6694 |
121 | 1651 | 2564 | 268 | 970 | 43 | 1720 |
122 | 1725 | 2820 | 243 | 1199 | 69 | 1321 |
123 | 2622 | 3508 | 273 | 1718 | 73 | 1859 |
124 | 2316 | 3088 | 273 | 1683 | 77 | 1628 |
125 | 2976 | 3299 | 236 | 2025 | 69 | 1615 |
126 | 3263 | 2939 | 222 | 2051 | 76 | 1457 |
127 | 3951 | 3320 | 302 | 2439 | 78 | 1899 |
128 | 2917 | 3418 | 285 | 2353 | 70 | 1605 |
129 | 2380 | 3604 | 309 | 2230 | 83 | 2424 |
130 | 2458 | 3495 | 322 | 1852 | 65 | 3116 |
131 | 2883 | 4163 | 362 | 2147 | 110 | 4286 |
132 | 2579 | 4882 | 471 | 2286 | 132 | 6047 |
133 | 1330 | 2211 | 198 | 1007 | 54 | 1902 |
134 | 1686 | 3260 | 253 | 1665 | 55 | 2049 |
135 | 2457 | 2992 | 173 | 1642 | 66 | 1874 |
136 | 2514 | 2425 | 186 | 1518 | 65 | 1279 |
137 | 2834 | 2707 | 185 | 1831 | 60 | 1432 |
138 | 2757 | 3244 | 105 | 2207 | 65 | 1540 |
139 | 3425 | 3965 | 228 | 2822 | 96 | 2214 |
140 | 3006 | 3315 | 214 | 2393 | 55 | 1857 |
141 | 2369 | 3333 | 189 | 2306 | 71 | 2408 |
142 | 2017 | 3583 | 270 | 1785 | 63 | 3252 |
143 | 2507 | 4021 | 277 | 2047 | 74 | 3627 |
144 | 3168 | 4904 | 378 | 2171 | 106 | 6153 |
145 | 1545 | 2252 | 185 | 1212 | 34 | 1577 |
146 | 1643 | 2952 | 182 | 1335 | 47 | 1667 |
147 | 2112 | 3573 | 258 | 2011 | 56 | 1993 |
148 | 2415 | 3048 | 179 | 1860 | 53 | 1997 |
149 | 2862 | 3059 | 197 | 1954 | 53 | 1783 |
150 | 2822 | 2731 | 168 | 2152 | 55 | 1625 |
151 | 3260 | 3563 | 250 | 2835 | 67 | 2076 |
152 | 2606 | 3092 | 211 | 2224 | 52 | 1773 |
153 | 2264 | 3478 | 260 | 2182 | 46 | 2377 |
154 | 2250 | 3478 | 234 | 1992 | 51 | 3088 |
155 | 2545 | 4308 | 305 | 2389 | 58 | 4096 |
156 | 2856 | 5029 | 347 | 2724 | 91 | 6119 |
157 | 1208 | 2075 | 203 | 891 | 33 | 1494 |
158 | 1412 | 3264 | 217 | 1247 | 40 | 1564 |
159 | 1964 | 3308 | 227 | 2017 | 46 | 1898 |
160 | 2018 | 3688 | 242 | 2257 | 45 | 2121 |
161 | 2329 | 3136 | 185 | 2255 | 41 | 1831 |
162 | 2660 | 2824 | 175 | 2255 | 55 | 1515 |
163 | 2923 | 3644 | 252 | 3057 | 57 | 2048 |
164 | 2626 | 4694 | 319 | 3330 | 54 | 2795 |
165 | 2132 | 2914 | 202 | 1896 | 46 | 1749 |
166 | 1772 | 3686 | 254 | 2096 | 52 | 3339 |
167 | 2526 | 4358 | 336 | 2374 | 48 | 4227 |
168 | 2755 | 5587 | 431 | 2535 | 77 | 6410 |
169 | 1154 | 2265 | 150 | 1041 | 30 | 1197 |
170 | 1568 | 3685 | 280 | 1728 | 35 | 1968 |
171 | 1965 | 3754 | 187 | 2201 | 42 | 1720 |
172 | 2659 | 3708 | 279 | 2455 | 48 | 1725 |
173 | 2354 | 3210 | 193 | 2204 | 44 | 1674 |
174 | 2592 | 3517 | 227 | 2660 | 45 | 1693 |
175 | 2714 | 3905 | 225 | 3670 | 46 | 2031 |
176 | 2294 | 3670 | 205 | 2665 | 44 | 1495 |
177 | 2416 | 4221 | 259 | 2639 | 46 | 2968 |
178 | 2016 | 4404 | 254 | 2226 | 51 | 3385 |
179 | 2799 | 5086 | 275 | 2586 | 63 | 3729 |
180 | 2467 | 5725 | 394 | 2684 | 84 | 5999 |
181 | 1153 | 2367 | 159 | 1185 | 30 | 1070 |
182 | 1482 | 3819 | 230 | 1749 | 39 | 1402 |
183 | 1818 | 4067 | 188 | 2459 | 45 | 1897 |
184 | 2262 | 4022 | 195 | 2618 | 52 | 1862 |
185 | 2612 | 3937 | 189 | 2585 | 28 | 1670 |
186 | 2967 | 4365 | 220 | 3310 | 40 | 1688 |
187 | 3179 | 4290 | 274 | 3923 | 62 | 2031 |
Answer:
solving first 4
use library forecast using
library(forecast)
load the data in t1
convert to time series using
t<-ts(t1$fortw)
plot t using
plot(t)
we see a downward trend in the time series so we try to detrendusingfirst differece
t.d<-diff(t)
plotting we get
now acf
acf(t.d)
now we create the models
for nsive we use rwf
m1<-rwf(t.d)plot(forecast(m1))
for smoothing we usem2<-HoltWinters(t.d , beta = F, gamma=F)plot(forecast(m2))
from summary we get the MAPE
for naive we have:
infinity
this is due to a zero record in the t.d (differencedvariable)
so we remove this and calulate MAPE maually
t.d<-t.d[-24]m2.fitted<-m2$fitted[,1][-24]m1.fitted<-m1$fitted[-24]mape_exp<-(100/185)*sum((abs(m2.fitted-t.d[2:185])/t.d[2:185]))mape_naive<-(100/187)*sum((abs(m1.fitted[2:185]-t.d[2:185])/t.d[2:185]))
we have naive mape ~ 81
exponential mape: 16
so exponential is better as it is lower